۰۷ آبان ۱۴۰۴
به روز شده در: ۰۷ آبان ۱۴۰۴ - ۲۲:۵۴
فیلم بیشتر »»
کد خبر ۱۰۶۰۵۸۵
تاریخ انتشار: ۱۱:۲۱ - ۲۷-۰۲-۱۴۰۴
کد ۱۰۶۰۵۸۵
انتشار: ۱۱:۲۱ - ۲۷-۰۲-۱۴۰۴

معرفی روشی نوین برای شناسایی ناخالصی‌های زردچوبه

معرفی روشی نوین برای شناسایی ناخالصی‌های زردچوبه
 تشخیص این ناخالصی‌ها با روش‌های سنتی، زمان‌بر، پرهزینه و در مقیاس صنعتی، تقریباً ناممکن است. از این رو، این پژوهش با هدف توسعه یک روش سریع، دقیق و غیرمخرب برای شناسایی و تعیین میزان ناخالصی در زردچوبه انجام شده است.

پژوهشگران دانشکدگان علوم دانشگاه تهران با به‌کارگیری ترکیبی از روش‌های پیشرفته حسگرهای نوری و مدل‌های یادگیری عمیق، موفق به شناسایی ناخالصی‌های زردچوبه شدند.

به گزارش ایسنا، در پژوهشی که به تازگی به سرپرستی دکتر جهانبخش قاسمی، استاد دانشکده شیمی دانشکدگان علوم دانشگاه تهران با همکاری علی صادقی و شکوفه خانی، دانشجویان این دانشکده و همچنین پژوهشگرانی از دانشگاه علوم پزشکی تهران انجام شده، راهکاری معرفی شده است که می‌تواند به عنوان یک راهکار استاندارد در صنایع غذایی برای اطمینان از کیفیت و اصالت محصولات مورد استفاده قرار گیرد.

دکتر قاسمی، سرپرست این تیم تحقیقاتی، درباره اهمیت این پژوهش گفت: زردچوبه به دلیل کاربردهای فراوان در آشپزی، داروسازی و طب سنتی، یکی از محصولات پرمصرف و ارزشمند به‌شمار می‌رود. با این حال در بسیاری از موارد، به انگیزه سودجویی، موادی مانند نشاسته ذرت، آرد گندم و آرد برنج به آن افزوده می‌شود.

 تشخیص این ناخالصی‌ها با روش‌های سنتی، زمان‌بر، پرهزینه و در مقیاس صنعتی، تقریباً ناممکن است. از این رو، این پژوهش با هدف توسعه یک روش سریع، دقیق و غیرمخرب برای شناسایی و تعیین میزان ناخالصی در زردچوبه انجام شده است.

دکتر قاسمی افزود: در این مطالعه، ترکیبی از روش‌های پیشرفته حسگرهای نوری، شامل طیف‌سنجی مادون قرمز نزدیک (NIR)، تحلیل تصاویر RGB و مدل‌های یادگیری عمیق مانند شبکه‌های عصبی کانولوشنی (CNN) به کار گرفته شد. برای این منظور، سه نمونه زردچوبه خالص از بازارهای محلی تهیه و در آزمایشگاه پودر شدند. سپس این پودرها با مقادیر مختلفی از آرد گندم، آرد برنج و نشاسته ذرت (از ۱% تا ۳۰% ناخالصی نسبت به وزن کل ترکیب) مخلوط شدند. در مجموع، ۷۵ نمونه تهیه و برای هر نمونه، تصاویر RGB و طیف‌های NIR ثبت شد.

عضو هیأت علمی دانشکدگان علوم در توضیح فرآیند جمع‌آوری داده و مدل‌سازی در این پژوهش، گفت: تصاویر RGB با دوربین Canon EOS ۶۰D در یک محفظه نورپردازی کنترل‌شده ثبت شد. سپس با استفاده از تکنیک‌های پیش‌پردازشی مانند تصحیح پراکندگی (MSC) و هموارسازی (Smoothing) پردازش شدند. داده‌های طیف‌سنجی NIR با استفاده از دستگاه Perkin Elmer و با دامنه ۴۰۰۰ تا ۱۲۰۰۰ سانتی‌متر معکوس ثبت شد. این داده‌ها نیز پس از اعمال تبدیل مشتق دوم، اصلاح خط پایه (Detrending) و نرمال‌سازی (SNV) برای مدل‌سازی آماده شدند.

وی در ادامه گفت: در روش تحلیل تصاویر RGB با روش رگرسیون حداقل مربعات جزئی (PLSR) مدلی توسعه یافت که میزان ناخالصی را براساس تغییرات رنگی نمونه‌ها پیش‌بینی کند. نتایج نشان داد که مدل‌های PLSR دارای ضریب تعیین (R²) بالای ۰.۹۹ و خطای پایین (RMSEC) بین ۰.۲۷۶ تا ۰.۹۶۵ هستند که بیانگر دقت بالای مدل در پیش‌بینی درصد ناخالصی بود.

 در تحلیل طیف‌های NIR با شبکه عصبی کانولوشنی نیز معماری CNN شامل لایه‌های کانولوشن یک‌بُعدی، لایه‌های چگال و لایه خروجی بود. داده‌های طیفی علاوه بر مدل‌سازی اولیه، با افزودن نویز مصنوعی گسترش یافتند تا مقاومت مدل در برابر تغییرات واقعی افزایش یابد. نتایج نشان داد که مدل CNN قادر به پیش‌بینی دقیق غلظت ناخالصی‌ها با خطای میانگین مربعات مطلوب و ضریب تعیین بالای ۰.۸۵ در داده‌های تست و آموزش بود.

دکتر قاسمی درباره نتایج این پژوهش گفت: مدل‌های توسعه‌یافته قادر به تشخیص و تفکیک ۹ سطح مختلف ناخالصی با حساسیت و ویژگی بسیار بالا بودند.

استاد تمام دانشگاه تهران درباره مزایای این روش شناسایی ناخالصی، اظهار داشت: روش پیشنهادی، یک راهکار سریع، غیرمخرب و قابل اعتماد برای پایش کیفیت زردچوبه در سطح صنعتی ارائه می‌دهد. در این روش، ترکیب شیمی‌سنجی (Chemometrics) و یادگیری عمیق باعث افزایش دقت و کاهش نیاز به فرآیندهای آزمایشگاهی پرهزینه و زمان‌بر شده است.

دکتر قاسمی با بیان اینکه مطالعه حاضر نشان داد که ادغام روش‌های تصویربرداری نوری و مدل‌های یادگیری ماشین عمیق، امکان توسعه سامانه‌های کارآمد برای شناسایی تقلب غذایی را فراهم می‌کند، گفت: این رویکرد نه‌تنها دقت و سرعت تحلیل را افزایش می‌دهد، بلکه می‌تواند در آینده به عنوان یک راهکار استاندارد در صنایع غذایی برای اطمینان از کیفیت و اصالت محصولات مورد استفاده قرار گیرد.

پربیننده ترین پست همین یک ساعت اخیر
برچسب ها: زردچوبه ، خالص ، تشخیص
ارسال به دوستان
ورود کد امنیتی
captcha
سرایا القدس: عملیات مان را در کرانه باختری متوقف نخواهیم کرد واکنش وکیل پژمان جمشیدی به جنجال‌ها: خروج موکل من کاملاً قانونی و برای دیدار با خانواده است موسیقی رپ، آینه‌ نسل زد/ رپ ممنوع نیست اما مجاز هم نیست کشف مین در ورزشگاه هایدوک اسپلیت؛ یادگار تلخ جنگ استقلال کرواسی منفجر شد اقبالی: مدافع تمام قد قانون حجابم/ مهاجری: شما هیز هستین!(فیلم) تاکید وزیر کشور بر توسعه روابط با افغانستان کشته شدن ۱۳۲ نفر در ریودوژانیرو در جریان عملیات پلیس واکنش ایران به تحریم‌های آمریکا علیه کوبا: جنایت علیه بشریت است دیدار الجولانی با بن سلمان در ریاض قالیباف: با فرهنگ شهدا می‌توانیم بر مشکلات فائق بیاییم؛ فرهنگ شهادت قدرت، ثروت، منزلت و معرفت تولید می‌کند با خانواده صابر کاظمی در مورد اهدای عضو صحبت شده است دختران فوتسال ایران قهرمان آسیا شدند؛ شکست چین در ضربات پنالتی پیروزی پرگل المپیاکوس بدون حضور مهدی طارمی در ترکیب اصلی لیست ۱۴ نفره شمسایی برای بازی‌های کشورهای اسلامی اعلام شد پزشکیان: به‌دنبال راه‌حل‌های جامع در حوزه کم‌آبی هستیم