۱۳ ارديبهشت ۱۴۰۴
به روز شده در: ۱۳ ارديبهشت ۱۴۰۴ - ۰۲:۵۴
فیلم بیشتر »»
کد خبر ۹۱۵۴۵۵
تاریخ انتشار: ۲۱:۲۴ - ۱۴-۰۸-۱۴۰۲
کد ۹۱۵۴۵۵
انتشار: ۲۱:۲۴ - ۱۴-۰۸-۱۴۰۲

یادگیری ماشینی راکتورهای هسته ای را ارتقا می دهد

یادگیری ماشینی راکتورهای هسته ای را ارتقا می دهد
به گفته کارشناسان آزمایشگاه ملی آرگون وزارت انرژی آمریکا، فناوری یادگیری ماشینی پتانسیل تغییر در عملیات راکتورهای هسته ای‌ را دارد.

 آنها کاربرد ماشین یادگیری در راکتور سریع خنک شده با سدیم (SFR) را نشان دادند که یک راکتور هسته ای نوین و مخصوص است. SFR نوعی از راکتور هسته ای است که از سدیم مایع به عنوان مایع خنک کننده برای هسته اش استفاده می کند.

این کاربرد سبب می شود راکتور بدون تولید کربن و با جدا کردن اتم های سنگین، برق بسازد.

به گزارش مهر، هرچند این راکتورها هم اکنون برای مقاصد تجاری در آمریکا به کار نمی روند اما کارشناسان بسیار خوش بین هستند که آنها پتانسیل بالایی برای تحول تولید برق و کمک به کاهش دورریز هسته ای دارند. SFR ها در آینده نزدیک راهی برای تولید انرژی پاک تر و ماندگارتر به حساب می آیند.

طبق بیانیه رسمی منتشر شده، یادگیری ماشینی با یک چالش بزرگ مرتبط با اطمینان از مایع خالص خنک کننده سدیم با دمای بالا روبرو است.

حفظ این خلوص برای جلوگیری از پوسیدگی و گرفتگی سیستم حیاتی است. محققان آزمایشگاه آرگون برای برطرف کردن این چالش ها یک سیستم یادگیری ماشینی سرنوشت ساز ابداع کرده اند.

السکاندر هیفتز مهندس هسته ای ارشد آرگون در یک بیانیه رسمی نوشته است: با به کارگیری قدرت یادگیری ماشینی برای نظارت مستمر و تشخیص ناهنجاری‌ها، می توان کنترل ابزار دقیق را بهتر کرد. این امر به پیشرفت کارایی و مقرون به صرفه بودن سیستم های انرژی هسته ای منجر می شود.

برای همین منظور محققان یک مدل یادگیری ماشینی ابداع کردند و حوزه های عملیاتی مختلفی را در نظر گرفتند. نخستین حوزه رصد مداوم سیستم خنک کننده بود.

در بیانیه محققان آمده است: این مدل طوری تجهیز شده تا داده های ۳۱ حسگر واحد METL در آزمایشگاه آرگون را تحلیل کند که متغیرهایی مانند دما، فشار و جریان مایع را می سنجد.

همچنین به عنوان یک بستر آموزشی برای مهندسان، تکنسین ها و حتی مدل های یادگیری ماشینی عمل می کند که همگی می توانند در بهره برداری و نگهداری این راکتورها سهیم باشند.

ادغام یک سیستم کامل تقویت شده توسط یادگیری ماشینی می تواند نظارت را بهبود بخشد و خطر ناهنجاری هایی را کاهش دهد که عملکرد راکتور را مختل می کند.

همچنین محققان ظرفیت مدل برای ردیابی اختلالات عملیاتی را به سرعت و با دقت نشان دادند.

این پژوهش ارتقای قابل توجهی برای مدل های آینده فراهم می کند. البته محدودیت های قابل توجهی نیز دارد مانند احتمال انتشار هشدارهای اشتباه در نتیجه ناکارآمدی تصادفی حسگرها.

برچسب ها: راکتور ، یادگیری
ارسال به دوستان
قهرمانی تراکتور در لیگ برتر؛ رویای 55 ساله محقق شد اولین شرکتی که AI جای کارکنانش را گرفت تاکید عراقچی بر حق ایران برای غنی‌سازی در گفت و گوی تلفنی با گوترش گردوخاک ۲۸ نفر را در شوش راهی بیمارستان کرد گالاتاسرای قهرمانی تراکتور را تبریک گفت (+عکس) واکنش مهدی پزشکیان به قهرمانی تراکتور (+عکس) ورود رودرانر به خط تولید انبوه؛ سلاح جدید آمریکا(+فیلم و عکس) جواهر معماری؛ یک اتاق مطالعه سلطنتی(+عکس) علی مطهری : آیت الله مطهری نسبت به نفوذ تفکرات انحرافی در میان گروه های مبارز هشدار می داد علیرضا افتخاری: از احمدی نژاد خیلی ناراحتم شمس آذر صفر- تراکتور ۴ / جام بیست‌وچهارم مسافر تبریز شد محسن برهانی: ستاد امر به معروف صلاحیت ارسال پیامک ‎حجاب ندارد چه برسد به شناسایی افراد بی‌حجاب واشنگتن : دیگر برای میانجیگری مذاکرات اوکراین و روسیه به دور دنیا سفر نمی‌کنیم نتانیاهو : حمله ما به کاخ ریاست جمهوری دمشق پیام آشکاری به نظام سوریه بود بخشدار هرمز : غارت خاک هرمز کذب است / مافیا نمی‌خواهد گردشگری در هرمز رونق بگیرد
نظرسنجی
به نظر شما هدف ستاد امر به معروف از ارسال پیامک های حجاب به موبایل های مردم چیست؟