۱۱ آبان ۱۴۰۴
به روز شده در: ۱۱ آبان ۱۴۰۴ - ۲۰:۰۴
فیلم بیشتر »»
کد خبر ۱۰۲۰۰۷۲
تاریخ انتشار: ۰۹:۱۸ - ۱۹-۰۹-۱۴۰۳
کد ۱۰۲۰۰۷۲
انتشار: ۰۹:۱۸ - ۱۹-۰۹-۱۴۰۳

پیش‌بینی داروهای تأثیرگذار مبتنی بر یادگیری عمیق

پیش‌بینی داروهای تأثیرگذار مبتنی بر یادگیری عمیق
یکی از مهم‏ترین هدف‌های فازهای اولیه کشف دارو، یافتن مولکول‌های دارویی کاندیدا با فعالیت فارماکولوژیک مناسب و سمیت کم است. روش‏‌های آزمایشگاهی طراحی و کشف دارو زمان‏بر و پرهزینه هستند.

«پیش‌بینی تعامل پروتئین-ترکیب با دخالت اطلاعات شباهت ترکیبات دارویی و دنباله‌های پروتئینی در شبکه‌های مبتنی بر یادگیری عمیق» عنوان طرح پسادکتری کریم عباسی و گرنت پژوهشی حمیدرضا ربیعی است که بنیاد ملی علم ایران از این طرح حمایت کرده است.

به گزارش ایسنا، کریم عباسی با مدرک دکتری تخصصی بیوانفورماتیک از دانشگاه تهران درباره این طرح توضیح داد: یکی از مهم‏ترین هدف‌های فازهای اولیه کشف دارو، یافتن مولکول‌های دارویی کاندیدا با فعالیت فارماکولوژیک مناسب و سمیت کم است. روش‏‌های آزمایشگاهی طراحی و کشف دارو زمان‏بر و پرهزینه هستند.

وی ادامه داد: بنابراین در کنار روش‏‌های آزمایشگاهی، از روش‌های محاسباتی نیز استفاده می‌‏شود. از روش‌های محاسباتی که برای پیش‌بینی بهترین کاندیدای داروها استفاده می‌‏شود، می‌‏توان به روش‌های سیستم بیولوژی، یادگیری ماشین کلاسیک و یادگیری عمیق اشاره کرد. با استفاده از این روش‏‌ها می‌توان داروهای تأثیرگذار را پیش‌بینی کرد و سپس تحقیقات آزمایشگاهی بر روی آنها انجام شود.

این پژوهشگر در ادامه بیان کرد: در این پژوهش پیش‌بینی تعامل پروتئین-ترکیب (CPI) مورد بررسی قرار گرفت. در پیش‌بینی تعامل پروتئین-ترکیب مقدار عددی تمایل اتصال یک ترکیب (کاندیدای دارو) با یک پروتئین هدف تعیین می‌شود که نقش اساسی در فاز اولیه پروسه‌ کشف دارو دارد.

وی ادامه داد: همچنین در این تحقیق به دنبال پاسخ به این سؤال اساسی بودیم که آیا می‌‏توان مدلی مبتنی بر یادگیری عمیق که بتواند با بهره‌‏گیری از دانش اضافی موجود در مجموعه داده‌ها، همانند اطلاعات شباهت میان ترکیبات دارویی و پروتئین‌ها طراحی کرد؟

عباسی در پایان خاطر نشان کرد: یک مدل محاسباتی مبتنی بر یادگیری عمیق برای پیش‌بینی میزان تعامل جفت پروتئین-ترکیب با در نظر گرفتن اطلاعات شباهت میان ترکیبات دارویی و پروتئین‌ها نیز طراحی شد. از این مدل بیشتر در فازهای اولیه طراحی دارو استفاده خواهد شد.

برچسب ها: دارو ، یادگیری عمیق
ارسال به دوستان
ورود کد امنیتی
captcha
مسمومیت ۵ دانشجوی دانشگاه فرهنگیان خرم‌آباد بر اثر گازگرفتگی چالش شیرین قلعه‌نویی؛ مهاجم سوم تیم ملی کیست؟ رقابت تنگاتنگ حسین‌زاده و علیپور برای جانشینی سردار و طارمی شهادت یک اسیر فلسطینی دیگر در زندان اسرائیل شفاف‌سازی استقلال درباره وریا غفوری؛ پاسخ قاطع مدیر رسانه‌ای به شایعه‌سازان او تا ۳۰سالگی به همه‌چیز رسید، اما احساس پوچی داشت؛ ۵ کشف تکان‌دهنده نجاتش داد تراکتور در یک‌قدمی صعود تاریخی؛ اسکوچیچ و گریز از غول‌های عربستان در مرحله حذفی توسعه روابط راهبردی ترکیه و ایران در محور گردشگری پنالتی‌زن بی‌رقیب فوتبال جهان؛ ۳۵ بار ناکامی، یکی از آن‌ها مهار تاریخی علیرضا بیرانوند تل‌آویو مجوز ورود حماس به مناطق تحت کنترل ارتش اسرائیل را صادر کرد ایثار بانک ملی ایران برای تقویت ستون‌های اقتصاد کشور نماینده مردم تهران در مجلس: بانک ملی ایران سابقه درخشانی در چرخه بانکداری کشور دارد ایرج قادری جمشید هاشم‌پور را برای فیلم تارج انتخاب کرد (فیلم) نتانیاهو: حزب الله خلع سلاح نشود از راه دیگری وارد می‌شویم اعتراض هواداران مس به مدیران؛ قعرنشینی با ۵ شکست و انتظار بی‌پایان برای موفقیت خطیبی ۷ یار کمکی برای اوسمار؛ بازماندگان تیم قهرمان لیگ ۲۳ در پرسپولیس جدید